低压浇铸过程中常见的问题
低压浇铸被广泛运用于金属加工工艺中,在我国现代化的工业中发挥着巨大的作用,随着低压浇铸在我国的广泛运用,它所带来的弊端也随之暴露出来。
一、氧化夹渣
出现氧化夹渣的原因一般都是因为炉料的不清洁,或者在使用的过程中,炉料的使用次数过多,还有一个原因也可以导致低压浇铸过程中的氧化夹渣,那就是浇铸系统的设计不良,在充型的时候设置不当。
二、气孔、缩孔
气孔问题在低压浇铸的过程中常见,它出现的一般是由于铸型工具的排气不良引起的,模具涂料系统的喷涂不良,冷却环设置不当,也可以导致气孔、缩孔的产生。
三、裂纹
低压浇铸的过程中,出现裂纹是很常见的,模具的设计不合理,尖角,壁得薄厚程度差异大都会导致裂纹现象的产生,要想对裂纹现象进行,改进模具的结构设计是必然的选择,只有模具的设计合理,对问题的解决才有帮助。
低压浇铸技术在我国的加工工艺中运用的十分普遍,随着技术的发展,其中的弊端也日益显现出来,我们只有分析问题产生的根源,才能更好的解决问题。
金属温度对精密铸造的影响金属温度对精密铸造的影响
在精密铸造工艺中,特别是在“等轴”工艺中,金属温度是起支配作用的因素,因此,也对许多质量特性有着直接的影响。如果测量和控制不当,金属温度的差异会对成品铸件尺寸、晶粒尺寸、疏松(表面和内部)、机械性能、产品品质(即热撕裂的倾向性 )、薄壁部分的充满度等方面产生影响。
因此,改进金属温度的测量和控制将会提高质量和生产率,降低维护和劳动力成本,减少测试费用和责任赔偿费用等。
精密铸造又称熔模铸造
砂型铸造生产的铸件精度、表面光洁度、材质的密度和金相组织、机械性能等方面往往较差,所以当铸件的这些性能要求更高时,应该采用其它铸造方法,例如熔模(失腊)铸造、压铸、低压铸造等等,下面由公司编辑为大家介绍:
一. 精密铸造的特点与优势:
精密铸造又称熔模铸造,同其它铸造方法和零件成形方法相比熔模铸造有以下特点:
1.铸件尺寸精度高,表面粗糙度值细,铸件的尺寸精度可达到4—6级,表面粗糙度可达0.4—3.2μm,可大大减少铸件的加工余量,并可实现无余量制造,降低生产成本.
2.可铸造形状复杂,并难于用其它方法加工的铸件.铸件轮廓尺寸小到几毫米大到上千毫米,壁厚薄0.5mm,孔经1.0mm以下.
3.合金材料不受限制:如碳钢、不锈钢、合金钢、铜合金、铝合金以及高温合金、钛合金和等材料都可用精铸生产.对于难以锻造、焊接和切削的合金材料,更是特别适用精铸方法生产.
4.生产灵活性高,适应性强.既可用于大批量生产,也适用于小批量甚至单件生产.
综上所述,精密铸造具有投资规模小、生产能力大、生产成本低、复杂产品工艺简单化、投资的优点.从而在与其它工艺和生产方式的竞争中处于有利的地位,前景光明.
精密铸造的温度测量控制精密铸造的温度测量控制
类型仪器仪表的温度测量变得复杂化了,包括:
1、 工艺变量的可接受范围:除非整个熔化炉都处于稳定状态(通常情况下,这是不现实的),否则,在浇铸过程中,温度会有一个范围,很重要的是,这个温度范围必须能保证产品的。
2、 信号处理能力:测量仪器与控制设备之间的每个模拟打到数字或数字到模拟转换都是潜在误差源,宽广的模拟范围导致精密度的缺乏。
3、 熔化技术:不良熔化技术会导致高蒸汽压力元素过渡沸腾、熔池表面产生扰动或形成反应产品,所有这些都会造成常规高温计的误差。
4、 铸锭、坩埚、线圈间的匹配:对于熔化周期特性而言,熔化系统的这三个组分都是重要的。匹配不当会造成熔化缓慢和不均匀、局部过热或溅射。上述这些也都是常规高温计误差的来源。
高温光谱仪对于问题的解决
高温测量技术有其固有的优越性:没有污染,解除传感器也不会;安装使用简便;可进行连续测量;没有消耗材料;灾难性故障(丧失测量功能)极其稀少。现在,高温测量科学的进步已经解决了在使用中与真实世界相关联的各种问题。高温光谱仪是一种全新的仪器,它是一种系统型的多波长高温计,在解决这些问题方面具有良好能力。
除了提供的真实世界中的精度之外,高温能光谱仪还有许多其它优点:它能提供每次测量时的质量实时读数以及公差(即测量时的不确定程度);它还能提供信号强度,同样温度和状态下的目标与理想目标之间的对比。这两项功能可提供有关原料和工艺状态的宝贵信息,有助于确保合金成分的正确并显示出合金材料是否被沸腾蒸发。显然,用户掌握了这些信息还可将其应用于一些更为的领域中。