起订:1
发货:1天内
高频淬火设备对齿轮进行淬火常见问题及处理对策
不管是渗碳淬火、碳氮共渗淬火、感应加热淬火还是整体加热淬火,齿轮高频淬火冷却过程可能出现的热处理质量问题主要有:
1、淬火后硬度不足、淬火态硬度不均、淬火硬化深度不够;
2、 淬火后心部硬度过高;
3、 淬火变形超差;
4、淬火开裂;
出现这类质量问题往往与齿轮的材质、前处理、淬火加热和淬火冷却有关。在排除材质、前处理和加热中的问题后,淬火介质及相关技术的作用就特别突出了。事实上,近年来国外对淬火冷却的研究也证明,在改进和提高热处理质量的工作中,注意的正是淬火冷却。
齿轮用高频淬火设备进行热处理冷却中的质量问题
一、硬度不足与硬化深度不够
齿轮高频淬火冷却速度偏低是造成齿轮淬火硬度不足、硬度不均和硬化深度不够的原因,但是,根据实际淬火齿轮的材质、形状大小和热处理要求不同,又可以分为高温阶段冷速不足、中低温阶段冷速不足以及低温阶段冷速不足等不同情况。比如。对于中小齿轮,淬火硬度不足往往是中高温阶段冷速不足所致,而模数大的齿轮要求较深淬硬层时,提高低温冷却速度就非常必要了。(2)成品表面平均硬度值,对于灰铸铁HT200和HT250导轨应≥65HS,HT300和HT350导轨应≥68HS,规定淬硬区域内不应有软点、软带。提高所用淬火介质的低温冷却速度,往往可以增大淬硬层深度。
二、淬火后心部硬度过高
这类问题可能与所选介质冷速过快或介质的低温冷却速度过高有关。解决办法之一是改换淬火油来满足要求。办法之二是与淬火介质生产厂家联系,有针对地加入适当的添加剂来降低淬火油的中低温冷却速度。办法之三是改用淬透性更低的钢种。
三、齿轮高频淬火开裂问题
这个问题主要出现在感应加热淬火中。选择好水性淬火介质,比如国内外普遍采用的PAG类淬火介质代替原来使用的自来水,问题便解决了。感应加热淬火采用PAG介质。可以获得高而均匀的淬火硬度和深而且稳定的淬硬层,淬裂危险。
金属配件使用高频淬火的好处
一方面高频淬火的好处体现在应用范围
1、高频淬火也可以称作高频退火机,钢材生产企业各类线材、带钢淬火、退火、调质等热处理生产线,带自动闭环温控系统,实现温度控制。
2、透热成型(高频淬火设备可以称作高频加热炉,高频透热炉)
A、各类标准件、紧固件、机械零配件、五金工具、直柄麻花钻的热镦、热轧。
B、金属材料加热退火。如:钢管拉伸、弯管、砸头;铁丝、钢丝加热制钉;不锈钢制品退火、涨型。
3、热处理(高频淬火处理)
各类五金工具、电动、液压、气动元件、汽、摩配等机械金属部件的表面、内孔、局部或整体淬火。如:锤、刀、剪、钳及各类轴、凸轮、链轮、齿轮、气门、球头销、大型机床导轨、球墨铸铁的淬火,各种金属线材热处理流水线。
4、钎焊(高频焊机,高频钎焊设备)
各类硬质合金刀头、车刀、铣刀、 刨刀、铰刀、金刚石锯片、锯齿的焊接;磨具、钻具、刃具的焊接;黄铜、紫铜、不锈钢锅底等金属材料的复合焊接。
5、金属熔炼:熔炼金、银、铜等。
6、其它加热领域
曲轴的感应加热表面淬火
曲轴在大量生产中,广泛采用感应加热表面淬火。淬火方法通常有:采用整圈分开式感应器,曲轴在静止状态下的感应淬火方法和采用半圈淬火感应器,曲轴在旋转状态下的感应淬火方法。
曲轴半圈淬火感应器由有效圈,外侧板,定位块,淬火冷却装置等四个主要部分组成,电流通过有效圈将电能转变成热能,它是由异形紫铜管焊接成一个串联的8字形回路的半圆形施感导体。
曲轴是一个形状复杂的零件,采用整圈分开式感应器使曲轴在静止状态下感应淬火时,感应器所产生的纵向磁场,由于曲柄对磁场的屏蔽,是被加热的曲轴轴颈圆周及轴向各部位产生极大的差异,导致淬火后轴颈圆周各处的轴向硬化区差异极大,静止状态下感应加热,感应器与轴颈的位置相对固定,感应器和轴颈圆周各处的经向间隙无法保持一致,导致淬火后轴颈圆周硬化层深度不均,因此,此种淬火方法已越来越少被采用。3、温度的监控:通过红外测温仪进行自动控制(根据工艺设定温度范围)。
采用半圆淬火感应器曲轴旋转感应加热方法,不仅因为改变了感应器产生的磁场方向,由纵向变为横向,基本消除了曲柄对磁场的屏蔽,从而淬火后轴颈各处的硬化区保持均匀,而且由于曲轴相对感应器做旋转,感应器靠定位块对轴颈做相对的柔性跟踪旋转运动,感应器藉助于定位块,能稳定保持干一个起与轴颈的间隙,保证了淬火后轴颈硬化层深度的均匀性和稳定性。因此,曲轴半圈感应器旋转加热淬火正越来越被广泛运用。2、正确锻造和进行预备热处理对高合金工具钢,锻造工艺的正确执行十分重要,锻造时必须尽可能改善碳化物分布,使之达到规定的级别。